TRANSPORT COEFFICIENTS
AND nPl METHODS

tc measure efficiency with which a conserved quan-
tity is transported over ‘long’ distances
(long compared to microscopic relaxation scales)

effective kinetic theory:

small deviations from thermal equilibrium
weak coupling

— using equilibrium F'T tools

will show:
3PI effective theory — same result (04¢q)

motivation:
1] in principle can use nPI far from equib
2| possibility to go beyond leading order (7)



nPl METHODS:

motivation:
sometimes standard pt is poorly convergent
try to improve convergence with non-pert techniques

(ex: gauge theories at high T
— HTL effective theory)

far-from-equib dynamics
nPI I : self-consistent in terms of dressed n-pt fcns

2PI QED:
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legendre transform
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S.[1, 1, A] is the classical action
So and Dq are the free propagators

(S, D] is the sum of all 2P[ diagrams



FoM obtained from the stationarity of the action:
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systematic non-pert approx by:
expand & (ex: loop or 1/N expansion)
solve EoM w/o further approx

consv laws corresponding to global symmetries are
respected (at any approx order)



example:
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FoM has form of a dyson equation:
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PROBLEM:
truncations = gauge dependence

wi depend on cancellations btwn different topologies
(vertex corrections and self energy corrections)

2P1 effective theory
— corrected propagators but not corrected vertices
— expect the ward identities are not satisfied



STRATEGY
introduce the resummed effective action
define w.r.t self-consistent solns of the propagators

5F[¢7?7;7A7S7 D] ~ ~ — O
55 [(5=8w:0.4, D=DlwD.A]} =
5F[¢7?~;E7A7S7 D] - ~ — O

substituting the selt consistent solutions we obtain
the resummed action:

~ J— J— J—

b, b, Al = Tlp, b, A, Sb, b, A], D, ), A]]



MOTIVATION FOR RESUMMED ACTION

[A] fenal derivs of resummed action [y, ¢, A]
—  n-point functions for the ‘external’ fields
satisfy standard ward identities

|B| renormalizable

finite # of local medium independent counter-trms
J. Berges, S. Borsanyi, U. Reinosa, J. Serreau, Annals Phys. 320, 344
(2005); U. Reinosa, J. Serreau, JHEP 0607, 028 (2006).



Different possible defns of n-point functions:
yim L OTA)
L2 §A4164,--- 54, A=A

(1)
Vidm

5 AD)
5A15A2 e 51471—2 5Dn—1,n D=D(A) | 'A=A

e other mixed definitions possible
e all definitions equivalent at exact level
e there are relations between the definitions

(chain rule)

general idea:
integral eqns for the n-point fcns of external fields
kernels of integral eqns from fcnal derivs of @
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define ‘external’ propagators:

exty—1 52 r- exty— 52 r-
D5 - = [ S =
define vertices
A0 %Sy (S
B2 5 Asdunddy  0A;
PO e
132 = V54255, 0A;
50 16D
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4-point functions:
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BETHE-SALPETER EQNS

Bethe-Salpeter type equations for the vertices:
from fcnal derivatives of the dyson equations wrt A

~ 0P
—1 0 <
571 = (8 +izs(S. Dlg

-7
0P

D~ t= (DYt —2i—)|4 -
(D"~ 2isp)ls.p

eraphically:
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EXTERNAL PROPAGATOR:

using the BS eqn —
0\—1 A0 & Q
(D3 ™! = (Dy) ™" + (A3 4S4u A yro3Sar3)

external propagator satisfies the usual wi:
al (Dext) —0

basic mechanism is simple:

dyson equations contain s-channel resummations
BS eqns introduce ¢- and u-channels

— crossing symmetry is restored

we extract the vertex part of the 2-point function:

50 = —iTr [AYSA9S]

i
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Conductivity:
kubo formula:

0 = _662 (aQOQIm %“Zet(Q(bO)) ‘qo—>0

oo # terms contribute at the same order
(from low frequency limit in the kubo formula)

pairs of ret/adv propagators with same momenta
integrating a term | dpy Gret(p)Gedv( p)
— a divergence called a ‘pinch singularity’

regulate using resummed propagators
(finite width of thermal excitations)

— extra factors of the coupling in the denominators
— Infinite set of graphs which contain products of
pinching pairs that all need to be resummed
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RESUMMATION PINCH SINGULARITIES
We use.

1= —iA"SAS

there is an int eqn for A that resums pinch terms

kernel is square of the matrix elements that cor-
respond to the 2 — 2 scattering and production

processes (AMY)

show this int eqn produced by the 2PI formalism
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iterate BS eqns:

------- [ — R = e+ Qo -




calculate M’s from derivatives of &

~ -
---------
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integral eqn for A




integral eqn:
ReA'(3,P) = ReAy(3,P) +
je{abede,f,g}

l . - (5) p(K) e\
2/alKR [ MV (P’K)]lef}(K)R A3 K)
Sret(P) = P Gret(P), Gret(P) Gug,(P) = _115(2]27)

ZA](K) TI‘(K Zret( ))
AZ( K) Tr(b( Amr( )

kernel Re | MU)(P, K)] — |[ME|?



$(2 — loop) — the square of the s-channel
complete to leading log order

d(3 — loop) — t- and u-channels

part of full lo contribution
MEC and E. Kovalchuk, Phys. Rev. D 76, 045019 (2007).
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RESUM PINCHES -~ FULL LEADING ORDER

basic idea:
compare 2 — 2 and 2 — 3

2nd is formally higher order
BUT collinear singularity — enhancement

oo series of collinear singularities must be resummed

(LPM effect)

= need 2 coupled integral equations that resum
pinching and collinear singularities
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METHOD: 3Pl EFFECTIVE ACTION

motivation:

need 3-loop diagram to get t- and u- channels in ME
heirarchy: (n — 00)PI|3_1,0p = 3PI|3_150p

J. Berges, Phys. Rev. D 70, 105010 (2004).

result:

3PI 1" — 2 int eqns: pinch and collinear singularities
MEC and E. Kovalchuk, Phys. Rev. D 77, 025015 (2008).
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SPI I
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RESUMMED ACTION:

7 EoM: .
functional derivatives wrt {A, ¢, ¢, S, D, V, U}

solve last 4 simultaneously for the sc solns:
S/'[w?r(;?A]? D[?‘p?&?A]? V[w7¢714:|7 ﬁ[Qp?QL?A]

resummed action:

L, A=
F[w7w7A7S|:w7w7A:|7D[¢7¢7A]7V[Qp?w?A]?U[w?w?A}:

define external vertices same as before

> =-ivV >--» =-iA e =-iU e =-iQ
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INTEGRAL EQUATIONS:
2 EoM from fen derivs of I' wrt S and D (SD eqns)

differentiate wrt A
— BS eqn for A and £ (many cancellations)

sub €2 eqn into A eqn and keep up to 2-loop order:

e ] P

also: 2 EoM from fcn derivs of I" wrt V and U
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— substitute again and keep up to 2-loop order:

Ist is int eqn for A~ same as from 2P
2nd is sc int eqn for V

same eqns found using kinetic theory (AMY)

also found using a diagramatic approach
J-S Gagnon and S. Jeon, Phys. Rev. D75, 025014 (2007)
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PROSPECTS
method should be generalizable to:

1] other transport coefficients (shear viscosity)
2] other theories (QCD)

3] nlo (7)

KEY:

ALL LEADING ORDER TERMS APPEAR
NATURALLY W/O ANY POWER COUNTING
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PROBLEMS
external n-point functions satisty wi
may get gauge dependence from sc (internal props)

gauge 1nvariance of the effective action:

calculate 2PI I' to L-loop order (gQL_Q)
— gauge dependent terms appear at order g2L

1] from behaviour of I" under BRS transformations
A. Arrizabalaga, J. Smit, Phys. Rev. D66, 065014 (2002).

2| from 2PI Nielsen identities
explicit gauge dependence of I' compensates gauge

dependence of the vev
MEC, G. Kunstatter, H. Zaraket, Eur.Phys.J. C42, 253 (2005).
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sc propagators are determined numerically from I’
— expect also gauge indep up to order of truncation

certainly should be okay for thermodynamic observ.

checked for 2-loop qed pressure from 2PI I’
S. Borsanyi, U. Reinosa - arXiw:0709.2316.



